Prediction of Covid –19 Epidemiology Using the Data from Social Media -A Descriptive Bibliographic Analysis

Niranjan Muralikrishnan (1)
(1) , India

Abstract

Background: The COVID –19 pandemics has led to many kinds of basic and social research. This has served as a platform for the scientists  to  extensively  mine  the  social  media  data  and  to identify  and  predict  the  potential  disease  hot-spots. Methods: Google  scholar  andPubmed  search  were  used  to  identify  the articles  which  has  used  social  media  data  to  project  the  hot-spots.  Search  period  window  was  one  month  and  only  open access  /  free  to  access  articles  were  included  for  the  study. Standardised   search   terms   were   usedby   a   team   of   two researchers. Results: A  total  of  15  articles  were  selected  and screened  for  the  inclusion  criteria.Then  12  articles  which  met the  inclusion  criteria  were  selected  for  this  study.  The  highest read  and  cited  articles  were  published  from  USAand  China respectively. Even though Canada has been acknowledged as the country with highest social media usage the research with such data has to be given some impetus. Conclusion:Usage of social media data for predicting caseloads can significantly reduce the morbidity and mortality due to COVID –19 which is relevant in these times of minimal digital divide around the globe.

Full text article

Generated from XML file

Authors

Niranjan Muralikrishnan
cmniranjan@yahoo.in (Primary Contact)
Muralikrishnan, N. . (2022). Prediction of Covid –19 Epidemiology Using the Data from Social Media -A Descriptive Bibliographic Analysis. Journal of Medical Case Reports and Reviews, 4(05). Retrieved from http://jmcrr.info/index.php/jmcrr/article/view/133
Copyright and license info is not available

Article Details